Adaptive sampling quasi-Newton methods for zeroth-order stochastic optimization
نویسندگان
چکیده
We consider unconstrained stochastic optimization problems with no available gradient information. Such arise in settings from derivative-free simulation to reinforcement learning. propose an adaptive sampling quasi-Newton method where we estimate the gradients using finite differences of function evaluations within a common random number framework. develop modified versions norm test and inner product control sample sizes used approximations provide global convergence results neighborhood locally optimal solution. present numerical experiments on illustrate performance proposed algorithm. When compared classical zeroth-order methods, observe that our strategies adapting significantly improve terms required.
منابع مشابه
Quasi-Newton Methods for Nonconvex Constrained Multiobjective Optimization
Here, a quasi-Newton algorithm for constrained multiobjective optimization is proposed. Under suitable assumptions, global convergence of the algorithm is established.
متن کاملStochastic Quasi-Newton Methods for Nonconvex Stochastic Optimization
In this paper we study stochastic quasi-Newton methods for nonconvex stochastic optimization, where we assume that noisy information about the gradients of the objective function is available via a stochastic first-order oracle (SFO). We propose a general framework for such methods, for which we prove almost sure convergence to stationary points and analyze its worst-case iteration complexity. ...
متن کاملStochastic Adaptive Quasi-Newton Methods for Minimizing Expected Values
We propose a novel class of stochastic, adaptive methods for minimizing self-concordant functions which can be expressed as an expected value. These methods generate an estimate of the true objective function by taking the empirical mean over a sample drawn at each step, making the problem tractable. The use of adaptive step sizes eliminates the need for the user to supply a step size. Methods ...
متن کاملStochastic Zeroth-order Optimization in High Dimensions
We consider the problem of optimizing a high-dimensional convex function using stochastic zeroth-order queries. Under sparsity assumptions on the gradients or function values, we present two algorithms: a successive component/feature selection algorithm and a noisy mirror descent algorithm using Lasso gradient estimates, and show that both algorithms have convergence rates that depend only loga...
متن کاملStochastic First- and Zeroth-order Methods for Nonconvex Stochastic Programming
In this paper, we introduce a new stochastic approximation (SA) type algorithm, namely the randomized stochastic gradient (RSG) method, for solving an important class of nonlinear (possibly nonconvex) stochastic programming (SP) problems. We establish the complexity of this method for computing an approximate stationary point of a nonlinear programming problem. We also show that this method pos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Programming Computation
سال: 2023
ISSN: ['1867-2957', '1867-2949']
DOI: https://doi.org/10.1007/s12532-023-00233-9